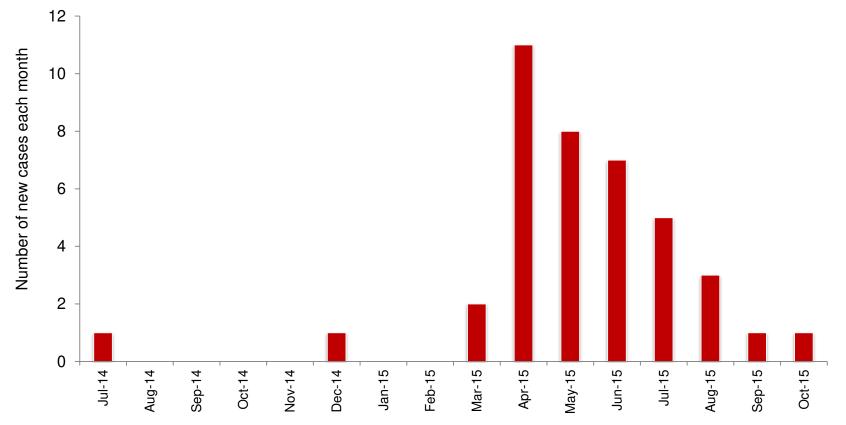
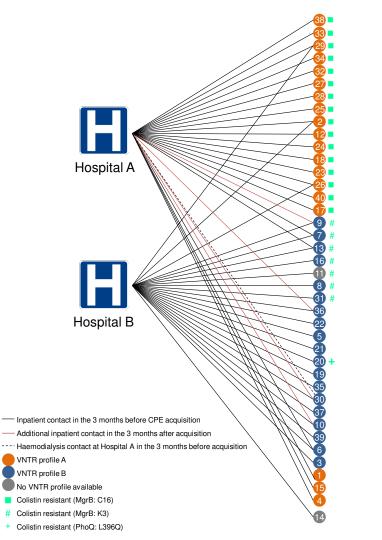

The rising threat from carbapenem-resistant organisms, and how to control them


Guy's and St Thomas'

Q1. Please rank the following as threats to our hospitals

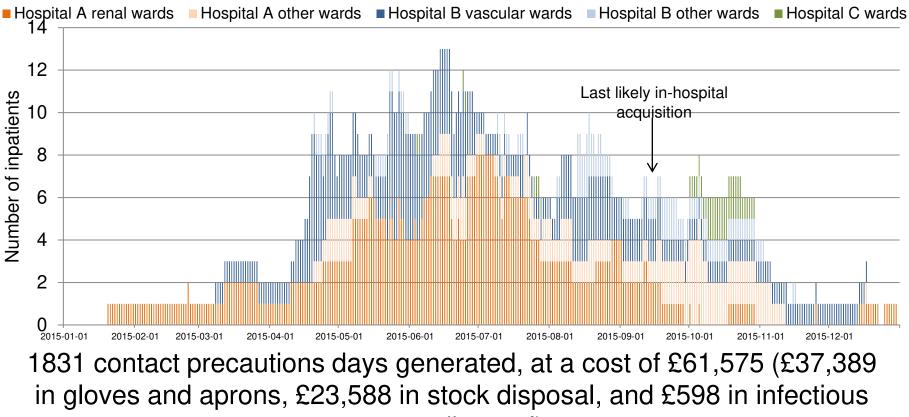
- CPE
- MRSA
- C. difficile
- COVID-19


CPE outbreak @ Imperial (K. pneumoniae NDM)

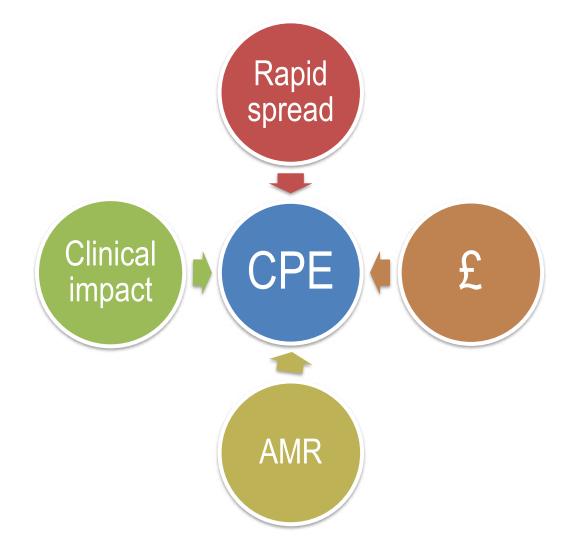
8 cases first identified by clinical culture, 32 by screening culture; of these 32, 14 had a subsequent positive clinical culture

Otter et al. Sci Rep 2017;7:12711.

Emergence of colistin resistance

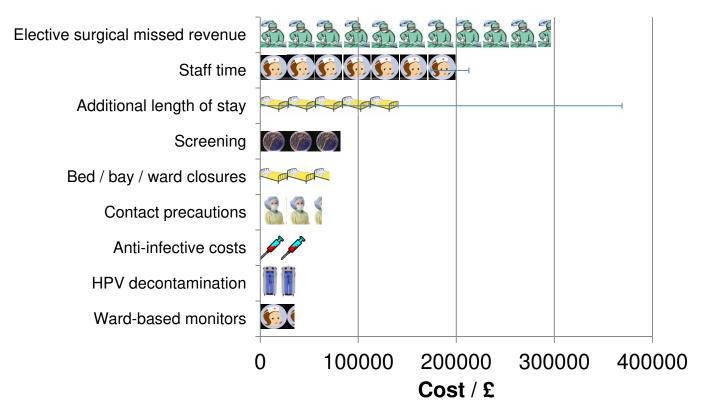


- - - -


Otter et al. Sci Rep 2017;7:12711.

Contact precautions

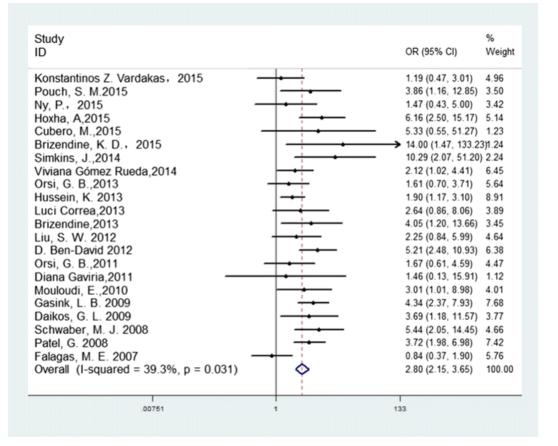
The number of inpatients with known CPE carriage, daily



waste disposal)

What's the problem? ££££

Economic evaluation of a 40 case outbreak of CRE. Error bars represent range



Otter et al. Clin Microbiol Infect 2016.

What's the problem? Resistance

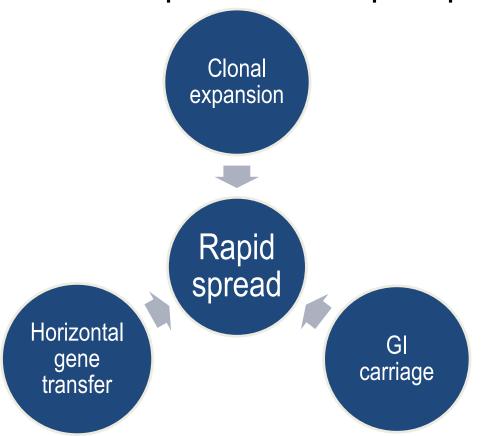
30 Jun 2014 00:00	BC - Blood culture	AICU - AICU	CNS - Coagulase Negat Staphylococcus GPC - Unidentified Gran SE - Staphylococcus ep) positive coccus	۲
30 Jun 2014 00:00	ASC - Ascitic fluid	AICU - AICU	KP - Klebsiella pneumor	iae	۲
	Organism KP - Klebsiella	pneumoniae	AK - Amikacin AMP - Ampicillin AUG - Augmentin CAZ - Ceftazidime COL - Colistin CP - Ciprofloxacin CPD - Cefpodoxime CXM - Cefuroxime ERT - Ertapenem GEN - Gentamicin MER - Meropenem TAZ - Pip/Tazobactam TGC - Tigecycline TRI - Trimethoprim	R R R R R R R R R R R R R R R R R R	

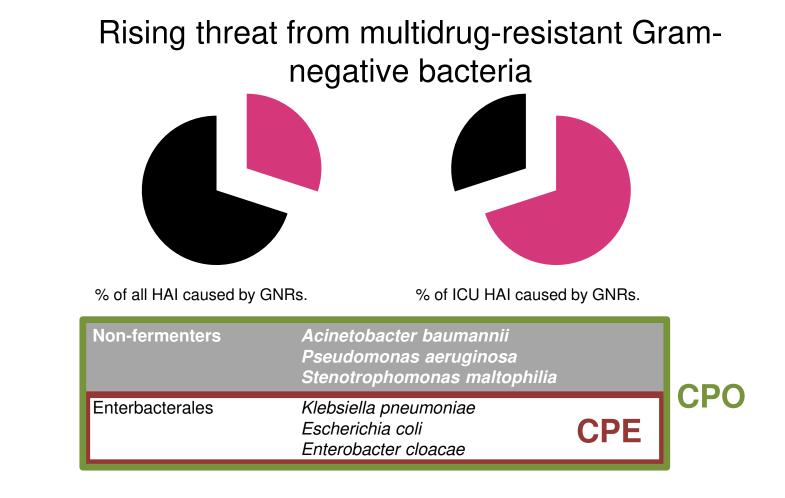
What's the problem? Mortality

Crude odds ratio (OR) for the association between carbapenem resistance and mortality of patients with *K. pneumoniae* infection

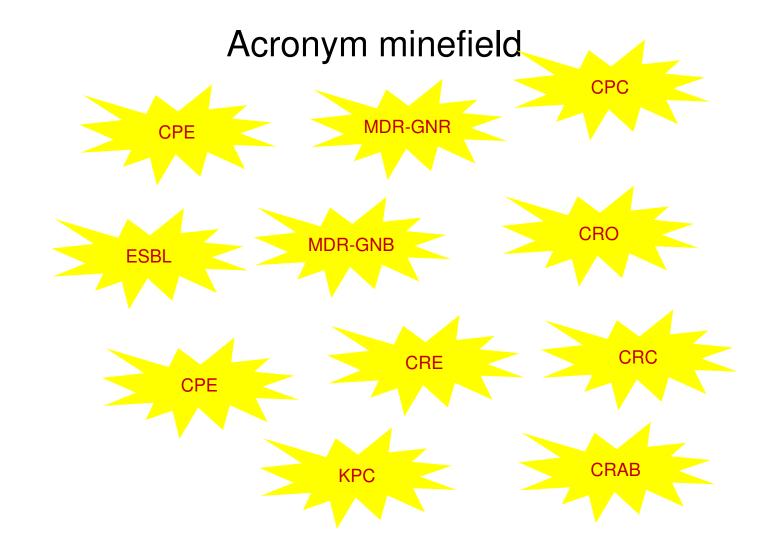
Xu et al. Annal Clin Microbiol Antimicrob 2017.

Carbapenem-resistant bloodstream infection is really bad news in ICU – and not all CPE are equal


Retrospective observational study from 19 Italian hospitals between 2018 and 2020. A total of 1276 monoclonal Gram-negative BSIs were included (polymicrobial BSIs were excluded). 30% (!) of these ICU-associated BSIs were CPE.

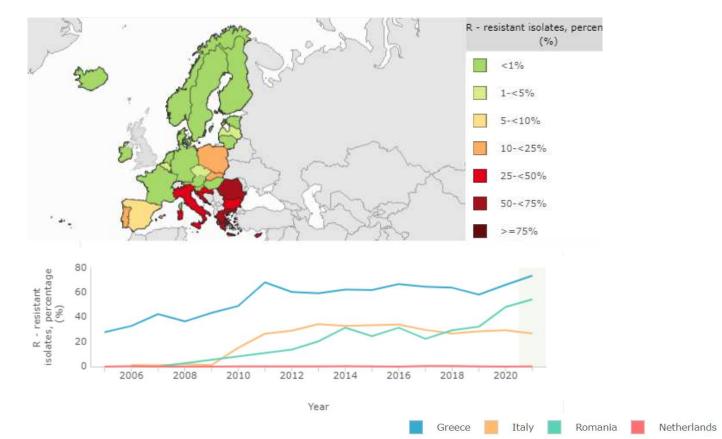

Carbapenam-resistant Gram negative bacilli	Crude 30-Day Mortality	Adjusted Odds Ratio of Death	Attributable Mortality, Controls: Patients With Carbapenem-Susceptible Bloodstream Infection
KPC–producing Enterobacterales	26.5%	1.43 (0.92–2.22)	5%
MBL*-producing Enterobacterales	36.4%	5.86 (2.72–12.76)	35%
CR Pseudomonas aeruginosa	32.8%	2.99 (1.48–5.95)	19%
CR Acinetobacter baumannii	43.2%	2.65 (1.52–4.61)	16%

MBLs* include NDM, VIM, and IMP carbapenemases


Falcone et al. Clin Infect Dis 2023.

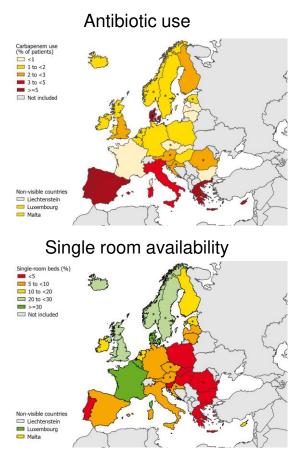
What's the problem? Rapid spread

Hidron et al. *Infect Control Hosp Epidemiol* 2008;29:966-1011. Peleg & Hooper. *N Engl J Med* 2010;362:1804-1813.

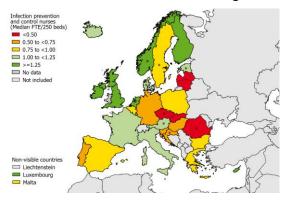


The emerging threat of CPE

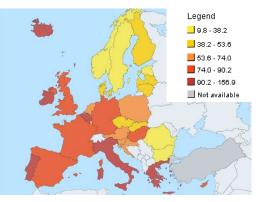
Pathogen	CPE	MRSA	VRE	C. difficile
Resistance	+++	+	+	+/-
Resistance genes	Multiple	Single	Single	n/a
Species	Multiple	Single	Single	Single
HA vs CA	HA & CA	HA	HA	HA
At-risk pts	All	Unwell	Unwell	Old
Virulence	+++	++	+/-	+
Environment	+/-	+	++	+++


CRE in Europe

% invasive K. pneumoniae isolates resistant to carbapenems

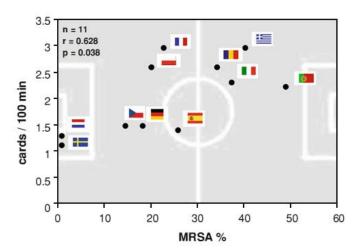


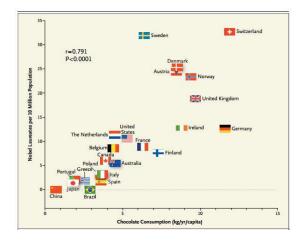
ECDC 2023.


What drives the European 'north-south divide'?

Infection control staffing

National debt

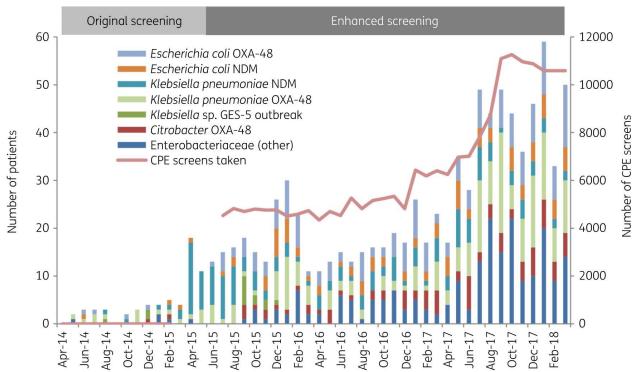

1. ECDC Point Prevalence Survey, 2013.


2, National debt as a percentage of GDP. "Eurostat public debt GDP" by Eurostat. Licensed under Attribution via Wikimedia Commons.

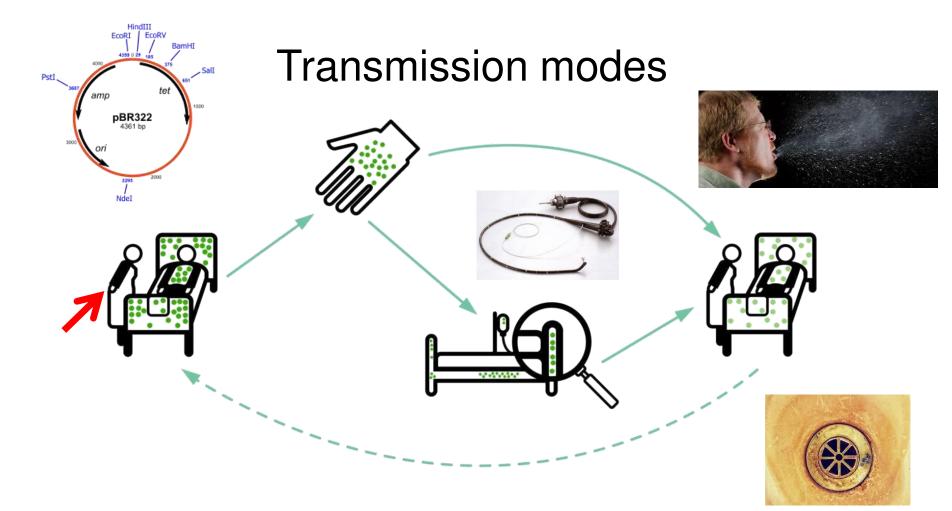
What drives the European 'north-south divide'?

Correlation between MRSA rate in BSIs and an indicator for fair play from the European Football Championships (red or yellow cards / 100 min)¹

Correlation between national chocolate consumption and rate of Nobel prize winners.²

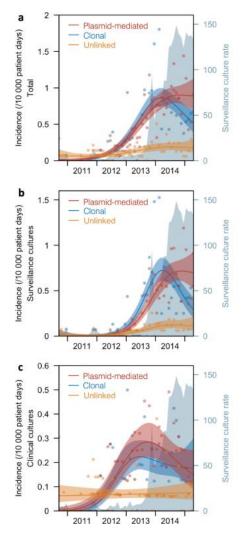


1. Meyer et al. Infection 2012 in press.


2. Messerli FH. New Engl J Med 2012;367:1562-4.

Seek and ye shall find...

Overall trend in CPE detected at the Trust, by bacterial species and mechanisms, deduplicated by patient


Otter et al. J Antimicrob Chemother 2020.

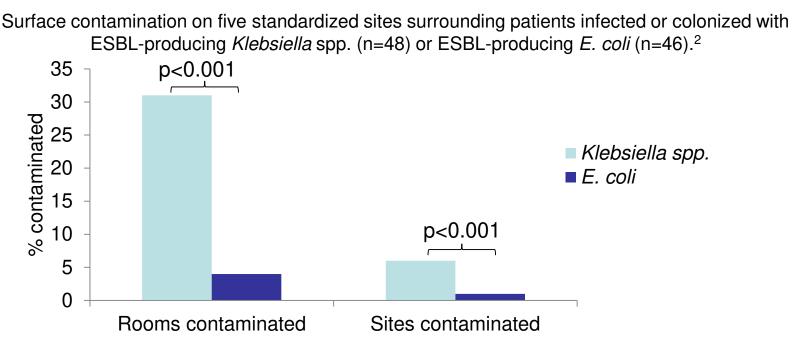
Otter et al. Infect Control Hosp Epidemiol 2011;32:687-699.

Promiscuous plasmids

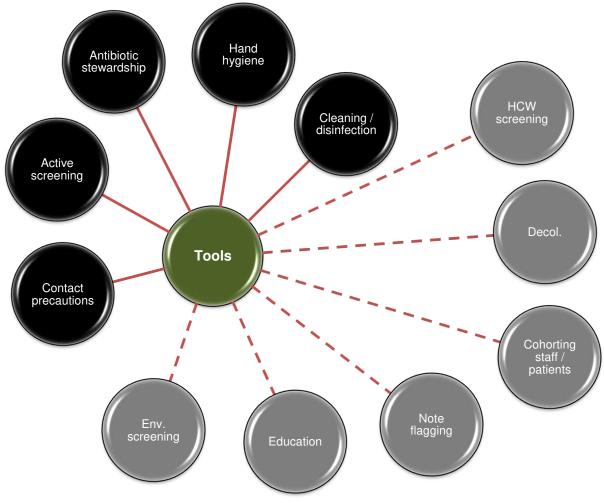
- Inter-species plasmid transfer of AMR genes was investigated in the 1970s regarding <u>gentamicin-resistance</u>.¹
- There are several convincing individual <u>small outbreaks</u> where it is clear that interspecies plasmid transfer of AMR genes has occurred in Gram-negative bacteria.²
- In <u>one plasmid outbreak</u>,³ multiple carbapenemases were dealt out like a pack of cards to multiple Enterobacterales species from a single index patient.
- More broadly, the <u>population structure</u> of KPC-producing *K. pneumoniae* is consistent with horizontal gene transfer.^{4,5}
- Need to look beyond 'same-organism-same-gene' transmission dynamics.
- 1. Lee et al. Antimicrob Agents Chemother 1986;29(4):654-9.
- 2. Sheppard et al. Antimicrob Agents Chemother 2016;23:3767-78.
- 3. Hammerum et al. J Antimicrob Chemother. 2016;71:3117-3124.
- 4. Chen et al. Trends Microbiol 2014;22:686-96.
- 5. Doumith et al. J Antimicrob Chemother 2017;72:2241-2248.

Horizontal plasmid transfer is a key driver of CPE transmission

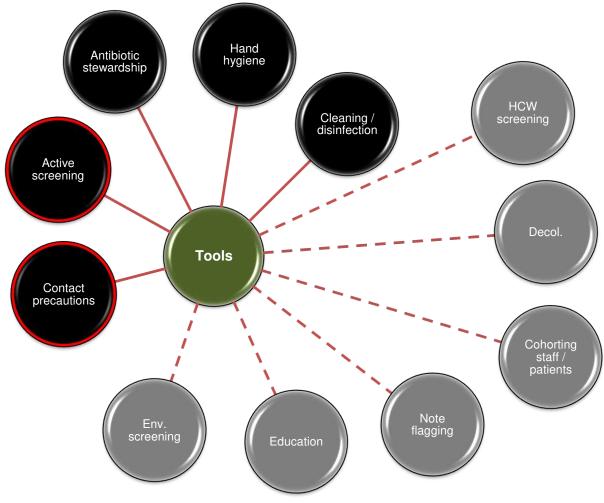
Genomic analysis of 1312 CPEs submitted to government ref lab in Singapore between 2010 and 2015.


Significant risk factors for clonal spread of CPE:

- direct or indirect ward-level contact;
- direct or indirect hospital-level contact;
- bacterial species (*Klebsiella* and *Enterobacter* a higher risk of spread than *E. coli;*
- carbapenemase type (NDM and OXA-type a higher risk of spread than KPC)
- Significant risk factors for plasmid-mediated spread of CPE:
- none


Marimuthu et al. Nat Comm 2022.

Transmissibility / fitness


- Klebsiella species 3.7x more transmissible than E. coli in the ICU.1
- K. pneumoniae seems to be more environmental than E. coli.^{2,3}

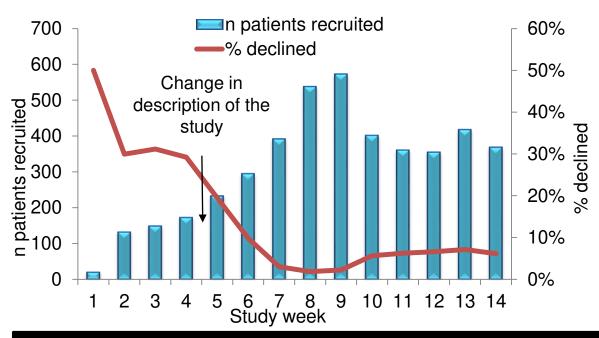
Gurieva *et al. Clin Infect Dis* 2018;66:489-93.
Guet-Revillet *et al. Am J Infect Control* 2012;40:845-8.
Gbaguidi-Haore. *Am J Infect Cont* 2013;41:664-5.

Otter et al. Clin Microbiol Infect 2015 2015;21:1057-1066.

Otter et al. Clin Microbiol Infect 2015 2015;21:1057-1066.

Q2. Who do you think should be screened on admission for CPO?

- All patients
- Everybody admitted to ICU
- Patients with a history of CPO
- Patients with an overnight hospital admission in the past 12 months
- Patients with a history of CPO OR with an overnight hospital admission in the past 12 months OR admitted to high-risk units


Who do I screen?

<u>UKHSA Framework for CPE</u> admission screening triggers, in the last 12 months, they have:

- been previously identified as CPE positive
- been an inpatient in any hospital, in the UK or abroad
- had multiple hospital treatments for example are dialysis dependent
- had known epidemiological link to a known carrier of CPE
- they are admitted into augmented care or high-risk units

Can I swab your rectum please?

Prospective study of asymptomatic antibiotic-resistant Gram-negative bacteria colonisation in 4006 patients on admission to a London hospital group.

Original description (weeks 1-4)

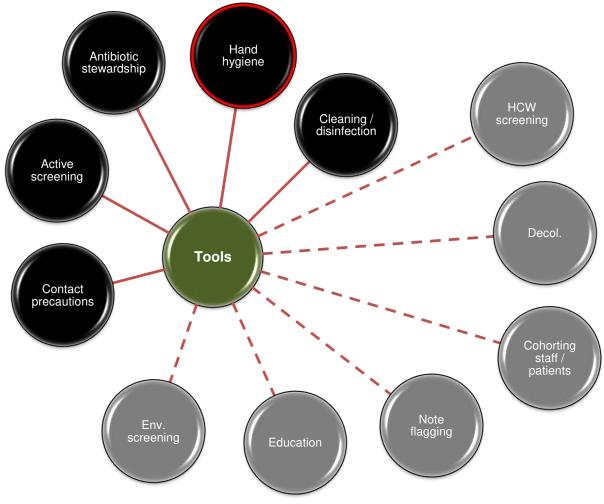
- "Bug"-focussed message
- Detailed scientific language

Modified description (weeks 5-14)

- Patient-focussed message
- "Why is it important to be screened?"
- "Benefits for you and those close to you!"
- "If you get an infection, we can put you on the right antibiotics straight away."

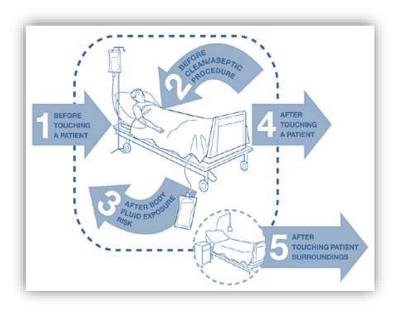
The change in study description results in a significant reduction in decline rate, from 31.9% of 869 patients to 7.6% of 3690 patients (p <0.001)

Dyakova et al. Clin Microbiol Infect. 2017;23:577.e1-577.e3.

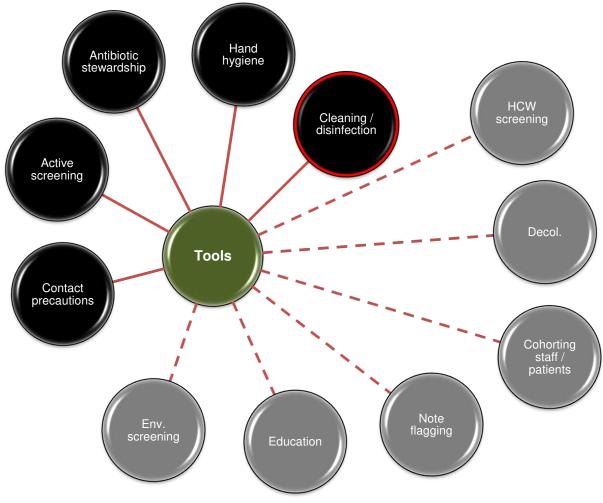

Colonisation often precedes infection for MDROs

Meta-analyses of subsequent infection in patients first identified as colonised with CPE/VRE.

		Any infection			Bloodstream infection			
		N studies	N infected / N colonised	Cumulative incidence (95% CI), %	N studies	N infected / N colonised	Cumulative incidence (95% CI), %	
MDR-G	àNB	32	845/9034	0.14 (0.10–0.18)	23	434/8307	0.07 (0.04–0.11)	
CRE or	CPE	19	602/4547	0.19 (0.15–0.25)	14	347/4142	0.10 (0.07–0.15)	
ESBL-E	E or 3GCR-E	14	235/4461	0.08 (0.05–0.13)	9	70/4087	0.04 (0.02–0.07)	
	E. coli	7	133/3098	0.08 (0.04–0.14)	6	46/3042	0.04 (0.01–0.10)	
	K. pneumoniae	4	59/741	0.09 (0.06–0.13)	3	14/730	0.02 (0.01–0.05)	
VRE		16	329/5015	0.07 (0.04–0.12)	10	163/1840	0.10 (0.06–0.16)	


Incidence for CP-CRE was 26% (95% CI 19–35)

Willems et al. Lancet Infect Dis 2023.


Otter et al. Clin Microbiol Infect 2015 2015;21:1057-1066.

Contaminated hands

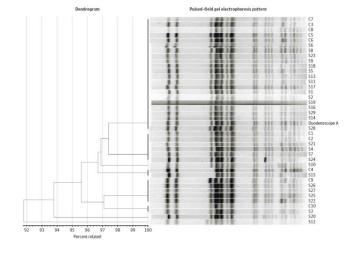
Erasmus et al. Infect Control Hosp Epidemiol 2010;31:283-94.

Otter et al. Clin Microbiol Infect 2015 2015;21:1057-1066.

Study or Subgroup	Events	room) Total	Control (-v Events		Moint+	Odds Ratio M-H, Random, 95% Cl	Odds Ratio M-H, Random, 95% (C1
11110064	Events	Total	Events	Total	Aneidug	m-n, Random, 95% CI	M-H, Kandom, 95% (-1
1.1.1 MRSA	103	11005	200	293386	7.10	0.01 10 10 1000		-
Anderson	103	11005	725	293386 8697	7.1%	3.81 [3.10, 4.69]		
Huang Mitchell	57	1454	248	5344	7.0%	1.39 [1.04, 1.86] 2.90 [2.18, 3.86]		_
Subtotal (95% CI)	74	13343	103	307427	21.1%	2.50 [1.38, 4.54]	-	-
Total events	234	10010	1136	0011121	2.111.0	Final und und		
Heterogeneity: Tau ^a =		1 df= 2 /P		· F = 9.1%				
Test for overall effect:			- 0.00001)	,1 - 34 %				
1.1.2 VRE								
Anderson	89	4083	423	307241	7.1%	16.16 [12.83, 20.36]		
Drees	19	138	31	500	6.4%	2.42 [1.32, 4.43]		
Ford	47	149	89	300	6.8%	1.09 [0.71, 1.67]		
Huang	58	1291	256	9058	7.0%	1.62 [1.21, 2.16]		
Zhou	69	3556	92	4929	7.0%	1.04 [0.76, 1.43]	-	
Subtotal (95% CI)		9217		322028	34.3%	2.36 [0.61, 9.15]		
Total events	282		891					
Heterogeneity: Tau² = Test for overall effect			P < 0.00001	l); l ^z = 99%				
1.1.3 ESBL								
Nseir	8	50	50	461	5.9%	1.57 [0.70, 3.52]		-
Subtotal (95% CI)		50		461	5.9%	1.57 [0.70, 3.52]		
Total events	8		50					
Heterogeneity: Not ap Test for overall effect:		3)						
1.1.4 Klebsiella sp. or							0	
Ajao	32	648	235	8723	6.9%	1.88 [1.29, 2.74]		
Subtotal (95% CI)	100	648	120102	8723	6.9%	1.88 [1.29, 2.74]	-	
Total events	32		235					
Heterogeneity: Not ap Test for overall effect:		01)						
1.1.5 Clostridioides d	ifficile							
Anderson	43	3797	1278	307890	7.0%	2.75 [2.02, 3.73]		=20,
Shaughnessy	10	91	77	1679	6.2%	2.57 [1.28, 5.15]		_
Subtotal (95% CI)		3888		309569	13.2%	2.72 [2.05, 3.60]	•	•
Total events	53		1355	25-35				
Heterogeneity: Tau [#] = Test for overall effect:			= 0.86); (* =	0%				
1.1.6 Acinetobacter							1	
1.1.6 Acinetobacter Nseir	16	52	41	459	6.3%	4.53 [2.32, 8.86]	_	
	16	52 52	41	459 459	6.3% 6.3%	4.53 [2.32, 8.86] 4.53 [2.32, 8.86]		•
Nseir	16 16		41 41				-	•
Nseir Subtotal (95% CI)	16							•
Nseir Subtotal (95% CI) Total events	16 plicable	52					-	۲
Nseir Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect:	16 plicable	52						•
Nseir Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect: 1.1.7 Pseudomonas	16 plicable Z = 4.42 (P < 0.00	52 001)	41	459	6.3%	4.53 (2.32, 8.86)	-	•
Nseir Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect: 1.1.7 Pseudomonas Nseir	16 plicable	52 001) 85		459	6.3 %	4.53 (2.32, 8.86) 1.96 (1.12, 3.45)		•
Nseir Subtotal (95% Cl) Total events Heterogeneity: Not ap Test for overall effect 1.1.7 Pseudomonas Nseir Subtotal (95% Cl)	16 plicable Z = 4.42 (P < 0.00 21	52 001)	41 61	459	6.3%	4.53 (2.32, 8.86)	-	•
Nseir Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect: 1.1.7 Pseudomonas Nseir Subtotal (95% CI) Total events	16 plicable Z = 4.42 (P < 0.00 21 21	52 001) 85	41	459	6.3 %	4.53 (2.32, 8.86) 1.96 (1.12, 3.45)	-	•
Nseir Subtotal (95% Cl) Total events Heterogeneity: Not ap Test for overall effect 1.1.7 Pseudomonas Nseir Subtotal (95% Cl)	16 plicable Z = 4.42 (P < 0.00 21 plicable	52 001) 85 85	41 61	459	6.3 %	4.53 (2.32, 8.86) 1.96 (1.12, 3.45)	-	•
Nseir Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect: 1.1.7 Pseudomonas Nseir Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect: 1.1.8 Norovirus	18 plicable Z = 4.42 (P < 0.0) 21 21 plicable Z = 2.35 (P = 0.0)	52 001) 85 85 2)	41 61 61	459 426 426	6.3% 6.5% 6.5%	4.53 (2.32, 8.86) 1.96 (1.12, 3.45) 1.96 (1.12, 3.45)	•	•
Neeir Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect: 1.1.7 Pseudomonas Neeir Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect: 1.1.8 Norovirus Fraenkel	16 plicable Z = 4.42 (P < 0.00 21 plicable	52 001) 85 85 2) 1016	41 61	459 426 426 32772	6.3% 6.5% 6.5%	4.53 (2.32, 8.86) 1.96 (1.12, 3.45) 1.96 (1.12, 3.45) 3.30 (1.31, 8.31)	-	•
Nseir Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect: 1.1.7 Pseudomonas Nseir Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overall effect: 1.1.8 Norovirus	18 plicable Z = 4.42 (P < 0.00 21 21 plicable Z = 2.35 (P = 0.02 5	52 001) 85 85 2)	41 61 61 49	459 426 426	6.3% 6.5% 6.5%	4.53 (2.32, 8.86) 1.96 (1.12, 3.45) 1.96 (1.12, 3.45)	•	
Neeli' Subtotal (95% CI) Total events Helerogeneity. Not ap Test for overall effect 1.1.7 Pseudomonas Neeli' Subtotal (95% CI) Total events Helerogeneity. Not ap Test for overall effect 1.1.8 Nor overall Fraenkel Subtotal (95% CI) Total events	16 plicable Z = 4.42 (P < 0.00 21 Z = 2.35 (P = 0.02 5 5	52 001) 85 85 2) 1016	41 61 61	459 426 426 32772	6.3% 6.5% 6.5%	4.53 (2.32, 8.86) 1.96 (1.12, 3.45) 1.96 (1.12, 3.45) 3.30 (1.31, 8.31)	•	•
Neeir Total events theterogeneity: Not ap- theterogeneity: Not ap- test for overall effect: 1.1.7 Pseudomonas Neair Subtotal (95% CI) Total events Heterogeneity: Not ap- Test for overall effect: 1.1.8 Nor ovirus Fraenkel Subtotal (95% CI) Total events Heterogeneity: Not ap- Subtotal (95% CI)	16 plicable Z = 4.42 (P < 0.00 21 21 plicable Z = 2.35 (P = 0.02 5 plicable	52 001) 85 85 2) 1016 1016	41 61 61 49	459 426 426 32772	6.3% 6.5% 6.5%	4.53 (2.32, 8.86) 1.96 (1.12, 3.45) 1.96 (1.12, 3.45) 3.30 (1.31, 8.31)	•	•
Neeir Total events theterogeneity: Not ap- theterogeneity: Not ap- test for overall effect: 1.1.7 Pseudomonas Neair Subtotal (95% CI) Total events Heterogeneity: Not ap- Test for overall effect: 1.1.8 Nor ovirus Fraenkel Subtotal (95% CI) Total events Heterogeneity: Not ap- Subtotal (95% CI)	16 plicable Z = 4.42 (P < 0.00 21 21 plicable Z = 2.35 (P = 0.02 5 plicable	52 001) 85 85 2) 1016 1016	41 61 61 49	459 426 426 32772	6.3% 6.5% 6.5%	4.53 (2.32, 8.86) 1.96 (1.12, 3.45) 1.96 (1.12, 3.45) 3.30 (1.31, 8.31)	•	
Neeir Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overail effect: 1.1.7 Pseudomonas Nseir Subtotal (95% CI) Total events Heterogeneity: Not ap Test for overail effect: 1.1.8 Norovirus Fraenkel Subtotal (95% CI)	16 plicable Z = 4.42 (P < 0.00 21 21 plicable Z = 2.35 (P = 0.02 5 plicable	52 001) 85 85 2) 1016 1016	41 61 61 49	459 426 426 32772	6.3% 6.5% 6.5% 5.7%	4.53 (2.32, 8.86) 1.96 (1.12, 3.45) 1.96 (1.12, 3.45) 3.30 (1.31, 8.31)	-	
Neeir Subtotal (95% CI) Total events Heterogeneity. Not ap Test for overall effect Test for overall effect Subtotal (95% CI) Total events Heterogeneity. Not ap Test for overall effect 1.1.8 Norovirus Freenkel Subtotal (95% CI) Total events Heterogeneity. Not ap Test for overall effect Total (95% CI)	16 plicable Z = 4.42 (P < 0.00 21 21 plicable Z = 2.35 (P = 0.02 5 plicable	52 001) 85 2) 1016 1016 1)	41 61 49 49	459 426 426 32772 32772	6.3% 6.5% 6.5% 5.7%	4.53 (2.32, 8.86) 1.96 (1.12, 3.46) 1.96 (1.12, 3.45) 3.30 (1.31, 8.31) 3.30 (1.31, 8.31)	•	
Neeir Subtota (95% CI) Total events Heterogeneity: Not ap- test for overall effect: 1.1.7 Pseudomonas Naeir Subtota (95% CI) Total events Heterogeneity: Not ap- Test for overall effect: 1.1.8 Morovirus Fraenkel Subtota (95% CI) Total events Heterogeneity: Not ap- Test for overall effect	16 plicable Z = 4.42 (P < 0.0(21 21 Z = 2.35 (P = 0.0) 5 5 plicable Z = 2.54 (P = 0.0) 651	52 001) 85 85 2) 1016 1016 1016 10 10 28299	41 61 49 49 3818	459 426 426 32772 32772 981865	6.3% 6.5% 6.5% 5.7% 100.0%	4.53 (2.32, 8.86) 1.96 (1.12, 3.46) 1.96 (1.12, 3.45) 3.30 (1.31, 8.31) 3.30 (1.31, 8.31)		· · · · · · · · · · · · · · · · · · ·

The MDRO status of the prior room occupant influences acquisition risk

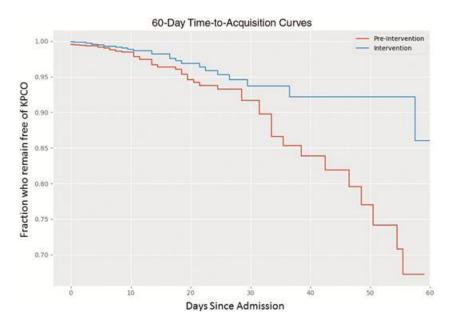
Meta-analysis of studies evaluating the risk of MDRO acquisition for the incoming occupant based on the status of the prior room occupant.


	OR	95% CI
Acinetobacter	4.5	2.3-8.9
Norovirus	3.3	1.3-8.3
C. difficile	2.7	2.0-3.6
MRSA	2.5	1.4-4.5
VRE	2.4	0.6-9.1
Pseudomonas	2.0	1.1-3.4
Klebsiella or E. coli	1.9	1.3-2.7
ESBL	1.6	0.7-3.5
Total	2.5	1.5-3.9

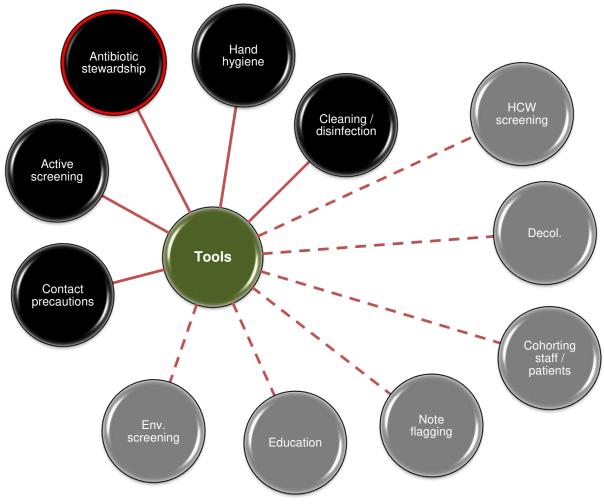
Mitchell et al. Infect Dis Health 2023.

When medical device decon fails...

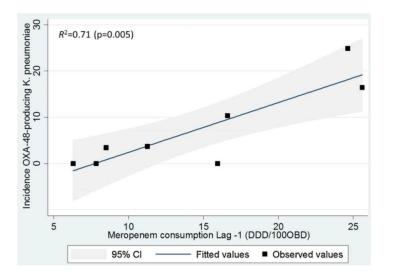
- 39 patient CRE outbreak in 2013 in Illinois.1
- Odds ratio for duodenoscope exposure in case patients 78 (95% CI 6-1008).
- No breakdown in compliance with decon procedures; has prompted a global review and change in the way that these devices are decontaminated.²
- Meticulously cleaning duodenoscopes prior to high-level disinfection should reduce the risk of transmitting infection, but may not entirely eliminate it. (<u>FDA Feb 23 2015</u>).



- 1. Epstein et al. JAMA. 2014;312:1447-55.
- 2. Rutala & Weber. Am J Infect Control 2016;44 (Suppl):e47-51

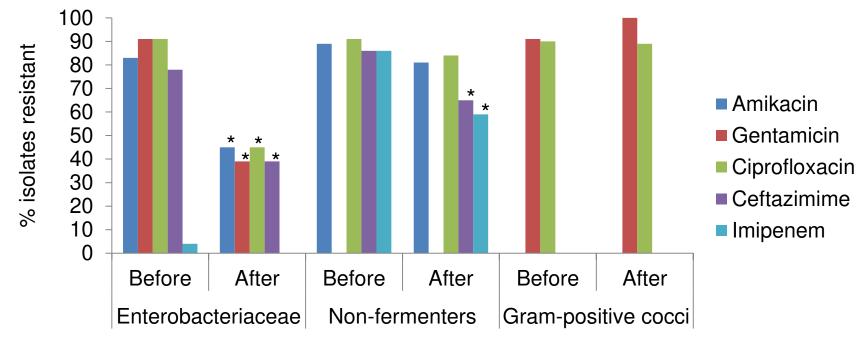

Contaminated sinks / drains

 CPE (*K. pneumoniae*) acquisition and clinical infection halved through improved management of sinks (OR = 0.51 for acquisions, and 0.29 for clinical cultures) (n=~7,500 pts).


Mathers et al. Clin Infect Dis 2018 in press.

Otter et al. Clin Microbiol Infect 2015 2015;21:1057-1066.

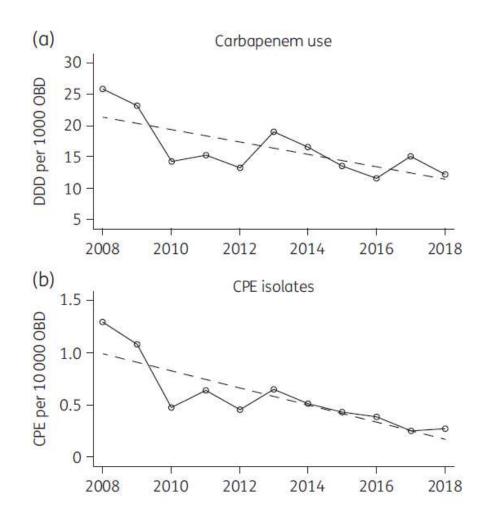
Can we forecast a CPE storm?

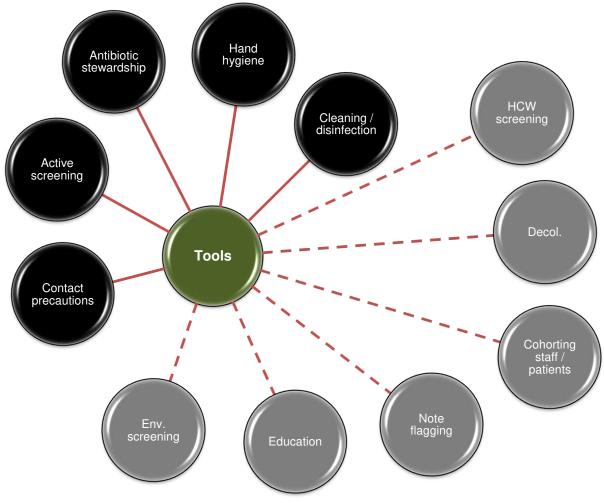

What drives carbapenem resistance? The use of meropenem in the previous year plotted against the incidence rate of OXA-48-producing K. pneumoniae

- Could we find and implement an "alert" level of carbapenem use?
- The paper reports that a stewardship intervention brought the CPE outbreak under control – but also implemented 'case isolation, screening of contacts, barrier nursing and other infection control interventions'.
- Study focussed only on OXA-48 K. pneumoniae; what about other Enterobacterales and nonfermenters?

Gharbi et al. Int J Antimicrob Agents 2015.

Antibiotic use


Evaluating impact of 6 month antimicrobial stewardship intervention on an ICU by comparing bacterial resistance for matched 6 month periods either side of intervention.

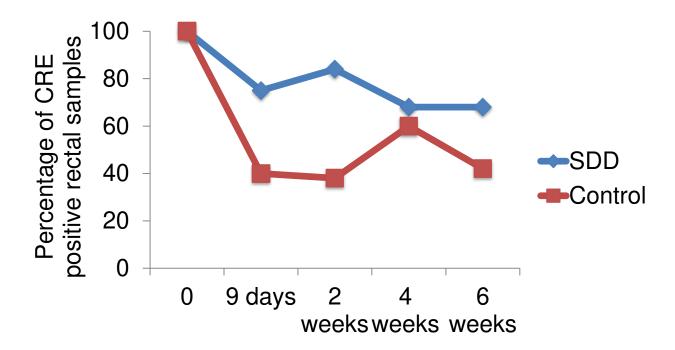

Hou *et al. PLoS ONE* 2014;9:e101447; * = significant difference before vs. after.

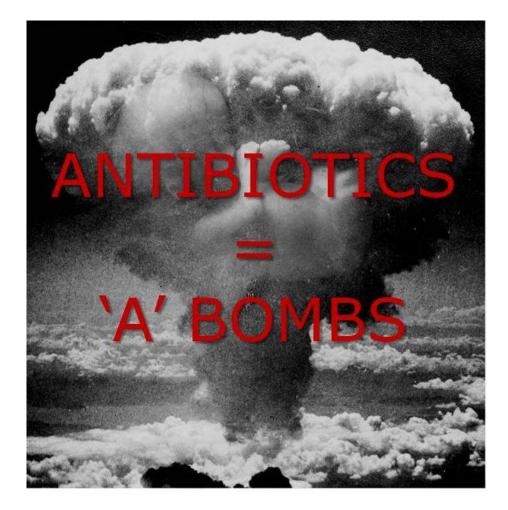
Antibiotic use

Impact of an antimicrobial stewardship programme on carbapenem consumption and CPE in an Australian local health district.

Cipko et al. J Antimicrob Chemother AMR 2020.

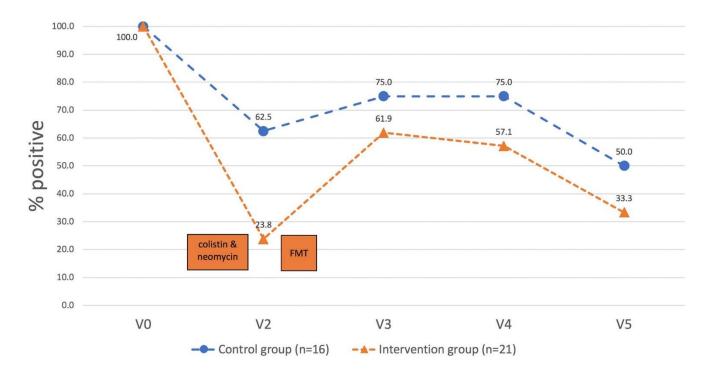
Otter et al. Clin Microbiol Infect 2015 2015;21:1057-1066.


Deisolation?

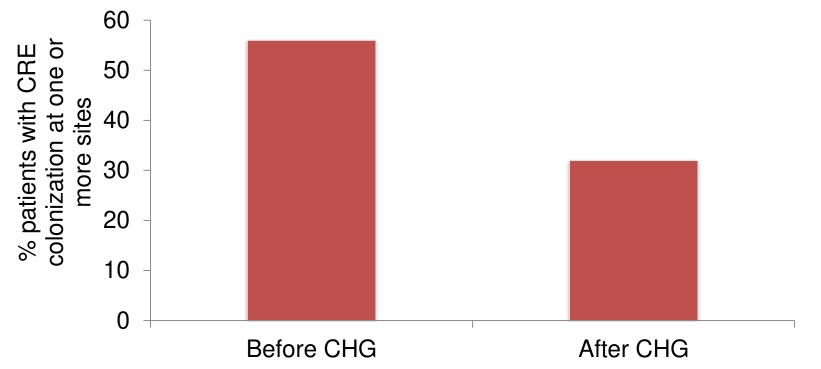

Author	Year	Setting	N pts	Organism	Duration of colonization
Bird ¹	1998	Elderly care facilities, Scotland	38	ESBL K. pneumoniae	Mean 160 days (range 7-548)
Pacio ²	2003	Long term care facility, USA	8	Resistant Gram- negative rods	Median 77 days (range 47-189)
Zahar ³	2010	Paediatric hospital, France	62	ESBL Enterobacteriaceae	Median 132 days (range 65-228)
O'Fallon ⁴	2009	Long term care facility, USA	33	Resistant Gram- negative rods	Median 144 days (range 41–349)
Zimmerman ⁵	2013	Patients discharged from hospital, Israel	97	CRE	Mean 387 days

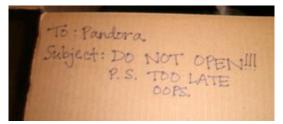
- 1. Bird et al. J Hosp Infect 1998;40:243-247.
- 2. Pacio et al. Infect Control Hosp Epidemiol 2003;24:246-250.
- 3. Zahar et al. J Hosp Infect 2010;75:76-78.
- 4. O'Fallon et al. Clin Infect Dis 2009;48:1375-1381.
- 5. Zimmerman et al. Am J Infect Control 2013;41:190-194.

'Selective' digestive decontamination


20 CRE colonized patients in each arm given gentamicin + polymyxin (SDD arm) or placebo (Control arm)

Decolonisation using FMT


39 ESBL or CPE colonized patients randomised to oral abx + FMT (brown(!) line) or no intervention (blue line)


Huttner et al. Clin Microbiol Infect 2019.

Chlorhexidine – efficacy

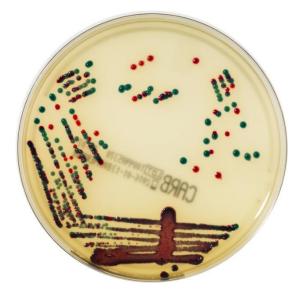
Impact of chlorhexidine gluconate (CHG) daily bathing on skin colonization with KPCproducing *K. pneumoniae* in 64 long-term acute care patients.

Colonised staff?

Multidrug-resistant organism growth from perirectal swabs

Culture result	Healthcare personnel participants ^a (n = 379) n (%)	Control participants ^a ($n = 376$) n (%)	p value
No MDRO growth	364 (96.0)	364 (96.8)	0.55
Vancomycin-resistant enterococci (VRE)	0	0	
ESBL-producing organisms	15 (4.0)	11 (2.9)	0.55
Carbapenemase-producing organisms	0	1 (0.3)	0.50

Abbreviation: ESBL, extended spectrum β-lactamase; MDRO, multidrug-resistant organism.


^a Includes participants who did not submit questionnaires.

Decker et al. Clin Microbiol Infect 2018;24:82.e1-82.e4.

Which is the most important intervention to prevention the spread of CPE?

- Screening & isolation
- Hand hygiene
- Cleaning / disinfection
- Antibiotic stewardship

The rising threat from carbapenem-resistant organisms, and how to control them

Jon Otter PhD FRCPath Director of Infection Prevention and Control & Consultant Clinical Scientist Guy's and St Thomas' NHS Foundation Trust Honorary Senior Lecturer in HCAI and AMR, Imperial College London @jonotter @jon.otter@gstt.nhs.uk Blog: www.reflectionsIPC.com Slides: www.jonotter.net

Guy's and St Thomas'